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1 Introduction
Most of the recent successes in artificial intelligence (AI)
are tied to the ability to perform an increasingly large
amount of computation on a mathematical representation
of information (i.e., data). In machine learning (ML)
algorithms, data is first rearranged into mathematical
objects called vectors living inside of a vector space.
These vectors can then be manipulated by linear and
nonlinear operations resulting in another vector that can
be translated into a useful result. For example, in an image
classification task the input image is typically encoded into
a vector containing the contents of three 2-dimensional
arrays of numbers representing the intensity values of
red, green, and blue for each pixel. A classifier then
computes a function that maps the image vector into a
classification vector, which is a 1-dimensional array with
each component representing a human-interpretable label
(e.g., cat, dog). In modern AI algorithms, especially deep
neural networks, most of the hardware processing power
in conventional processors is devoted to memory access
for parallel linear operations on vectors [1], resulting in
a limitation as models scaled up in size. Accordingly,
specialized hardware architectures that efficiently perform
linear operations have been introduced to accommodate
the increasing demand for AI. These include GPUs [2], TPU
[3] and neuromorphic processors [4, 5].

In-memory computing and multi-processing tech-
niques are two innovations that have allowed specialized
hardware such as multi-core CPUs and GPUs to address the
increasing demand for data processing. These techniques,
however, were not a significant enough leap forward to
close the gap between current computing capabilities and
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in power efficiency and speed. Neuromorphic processor
architectures are optimized on a hardware level to run
neural-network-based algorithms as fast and efficiently as
possible [7]. Such architectures derive these benefits from
the use of analog systems in which the computation is
inherently tied to the physics of the device itself, rather
than defined in software on a generalized digital archi-
tecture. Analog systems, however, must be engineered to
control noise in such a way that the signals of interest
are not corrupted by the processing itself, a task which
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arrays [3, 23], implement MACs directly while others, such
as the WDM architecture analyzed in this paper, implement
weights as individual units and perform all summation
simultaneously.

Many applications involve multiplying a batch of vec-
tors with the same matrix, such as running inference tasks
with input data on a fixed (pre-trained) neural network
classifier. This approach optimizes inference tasks for high
bandwidth signals and low latency results. In such cases,
it can be advantageous to design analog MAC units where
input signals x(t) can be modulated on fast time scales
and are multiplied by “fixed” weights w that only change
on relatively-slow time scales. In general, reconfiguring
optoelectronic weights takes significantly longer than
their optical signal bandwidth capacity. Optical processors
thus need to be codesigned at a system level with an
electronic circuitry that optimizes the decomposition of
matrix–vector multiplications into smaller vector–vector
products while reducing the number of redundant compu-
tations [24].

2.2 Role of individual resonators
Resonator-based weights are specifically designed to take
advantage of wavelength-division multiplexing (WDM), in
which separate signals are encoded on optical carriers with
nonoverlapping wavelengths. In optical communications,
multigigahertz signals are modulated as amplitude or
phasechangesonacontinuous-wave (CW)carrier traveling
through a bus waveguide. With WDM, hundreds of CW
carriers with unique wavelengths can coexist in a single
waveguidewithout interferingwithoneanother,effectively
creating many independent information channels within
a single physical channel. An array of resonators, usually
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way that is not usually seen in large many-resonator
PICs. Ultimately, compensating calibration and control
techniques are required for practical deployment in either
case. A discussion of the most common options for
MZI-based PICs can be found in [39].

3.3 Definitions
Normalized Weights: For simplicity’s sake, we introduce
a normalized weight 𝑤̂ ∈ [0, 1]. Conversion between real
weight 𝑤 (as measured by the analog summing element)
and normalized weight can be accomplished via the
equation:

𝑤̂ = 𝑤 − 𝑤min
𝑤max − 𝑤min

(2)

where 𝑤max and 𝑤min are the maximum and minimum
weight values, respectively.

Bit Representation: Before defining error quantities
such as accuracy, precision and resolution, sometimes it
is useful to refer to them in units of ‘bits’. For example, if
the relative error of a measurement is 0.125, or 12.5%, we
can also refer to it as 3 bits, because it takes three digits
to represent that number in binary representation. More
generally, if the error is 𝜀∈ (0, 1], the bit representation can
be computed as 𝜀 (bits)= log2(1∕𝜀)∈ [0,∞). For example,
as the measurement error goes to 0, we say that it has
infinite precision.

Accuracy: In the context of resonator weight banks,
accuracy refers to the systematic error between the com-
manded weight (denoted ŵ) and actual resulting weight
vector (W(ŵ), where W
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Table 2: Simplified microresonator weight bank model, from
actuation current (step 1) to resulting weight (step 4).

Step Physical mechanism

1 Joule heating:

Ti = T0 +
N∑
j

Ki jR jI2j
T i: local temperature; T0: room temperature; K:
effective thermo-optic coefficient matrix (diagonal
in the absence-48.016 -.84).
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5.3 Feedback control
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