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Abstract: Microelectronic computers have encountered
challenges in meeting all of today’s demands for informa-
tion processing. Meeting these demands will require the
development of unconventional computers employing
alternative processing models and new device physics.
Neural network models have come to dominate modern
machine learning algorithms, and specialized electronic
hardware has been developed to implement them more
efficiently. A silicon photonic integration industry promises
to bring manufacturing ecosystems normally reserved for
microelectronics to photonics. Photonic devices have
already found simple analog signal processing niches where
electronics cannot provide sufficient bandwidth and
reconfigurability. In order to solve more complex informa-
tion processing problems, they will have to adopt a

processing model that generalizes and scales. Neuromorphic
photonics aims to map physical models of optoelectronic
systems to abstract models of neural networks. It represents
a new opportunity for machine information processing on
sub-nanosecond timescales, with application to mathe-
matical programming, intelligent radio frequency signal
processing, and real-time control. The strategy of neuro-
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performance advances. Conventional computers are here
to stay; however, recent years have seen a resurgence in
unconventional computing approaches, ranging from
neuromorphic electronics to radio frequency (RF)
photonics.

Photonics does not exhibit the same physical proper-
ties of semiconductor electronics. It is unquestionable that
photonics, specifically fiber optics, is preferable for high-
bandwidth communication over long distances. Motivated



3 Photonic information processing

The question of what an optical computer is or should be
has inspired intense debate, one could say an identity
crisis. The notion of optical computing is alluring and
prone to hype. An experienced retrospective is found in
Ref. [15] and a recent survey is found in Ref. [16]. Con-
trasting philosophical views of the cast of characters in
1980s optical computing are represented in lay form in
Ref. [17]. From these sources, we can perceive the tanta-
lizing excitement and multifariousness of ideas in optical
computing. Research in past decades (usually referred to as
optical computing) has strongly influenced the research
that has surged in recent years (usually referred to as
photonic information processing). It identified ideas that
work well and also pointed out pitfalls from which to learn.

3.1 Previous decades

Optical logic based on nonlinear and bistable devices was
proposed in the 1960s [18], but optical devices fail to pro-
vide some fundamental properties required to make logic
gates[19, 20]. In electronic gates, both input and output are
represented by voltage, so the ability of one gate to drive
another is taken for granted. In most nonlinear optical
devices, on the other hand, the output signal must be a
different wavelength than the pump input, meaning that
that gate cannot drive a similar gate. Secondly, electronics
have a consistent reference potential by which to define
logical “0” (0 V) and “1” (1 V), so the ability of one gate to
drive multiple others (i.e. fan-out) is taken for granted.
When signals are represented by optical energy, they
attenuate when splitting, so the definition of logical “1”
changes when signals fan-out [21]. These two barriers stem
from representing information as potential energy
(voltage) versus a conserved energy unit (photons or cur-
rent). This difference favors a non-digital architecture for
light-based processing.

The second choice for optical system reconfiguration
such as switching, is then to rely on electronic—photonic
interactions, which are inherently inefficient given the
three-orders of magnitude dimension difference of the
underlying wave functions. The latter has, however, led
researchers to explore to the fields of nanophotonics and
plasmonics, where the light-matter interactions can be
enhanced. Thus, micrometer-small opto-electronic devices
have been recently demonstrated, however, often with



capabilities, albeit with some process modifications [31-
33]. Secondly, datacenters now rely on a staggering num-
ber of short reach optical interconnects, and silicon
transceivers are lower cost than their overperforming 111-V
counterparts. Silicon photonic platforms are still in a
nascent period with many potential advantages yet to be
realized [34]; however, it is reasonable to predict robust
and vibrant progress in the field. New foundry lines are
being created, increasing the supply; new and larger
datacenters are being built, increasing the demand for
short reach optical interconnects. Silicon photonics is not
as simple as supply/demand: the growth of the industry
has spawned an entire research ecosystem.

The barriers to conducting silicon photonics research
are continually lowering with the advent of shared wafers,
design tools, prototyping services, open-access libraries,
and educational resources [35]. An important development
in the field is the fabrication-less or “fabless” research
model [36]. In the fabless design process, research groups
outsource the fabrication of their designs to silicon pho-
tonics foundries. The foundries can then produce the chips
at a lower cost by placing multiple designs from different
groups on shared wafers. The fabless design model with
foundry lines specifically tailored to silicon photonics
make state-of-the-art devices and scalability accessible ata
low cost and small volume.

The accessibility of silicon photonics opens the door
for advanced system-level research that is academic and/or
exploratory in nature [37]. The fabless design model
crucially relieves the burden of early-stage research to
demonstrate concrete market demand. For example, inte-
grated RF photonics are anticipated to impact future
wireless operations in the millimeter-wave bands. Because
their exact impact is still uncertain, the crucial early-stage
research in the field depends on the accessibility of the
fabless design model.

Silicon photonics apparently meets the criteria for an
imagined “optical silicon,” which carries the potential to
reinvigorate investigation into advanced photonic infor-
mation processing.

3.3 Contemporary approaches

A scalable model of computing is necessary to make
computers that leverage photonics. A variety of models
have recently gained traction in the field. This article will
focus on the neuromorphic model, but it is worth noting
contemporary approaches to computing with light, namely

qguantum silicon photonics, photonic reservoir computing,
and RF photonics. These approaches take advantage of
various properties of lightwaves, respectively: their quan-
tum coherence in low loss waveguides; their high-speed
dynamics in nonlinear media; and their linearity across a
high dynamic range.

3.3.1 Quantum silicon photonics

Silicon photonic systems have been proposed for quantum
processing models, including quantum simulation and
quantum computing [38, 39]. A universal quantum
computing approach based on implanted donor qubits









spectral mining [110], spread spectrum channel estimation
[111], and arrayed antenna control [112]. There is insistent
demand to implement these tasks at wider bandwidths
using less power than possible with RF electronics. As of
now, RF-relevant information processing tasks of principal
component analysis [113, 114] and blind source separation
[115] have been demonstrated in silicon photonic weight
banks.

Beyond merely improving current machine learning
calculations, neuromorphic photonics could enable as-of-
yet unforeseen applications in sub-nanosecond domains,
for example, measurement and control for ultrafast phys-
ical phenomena. For example, Gordon [116] investigated
potentials of deep neural networks to classify microwave
qubit states based on observations of nanosecond tran-
sients. Developing that direction will call for the close
involvement of experts in experimental physics. Applica-
tion developers can apply new computer technology only if
they can rely on the fact that a propositional computer will
adhere to a model. That ability to investigate future ap-
plications of scaled-up networks illustrates the power of
model adherence — the neuromorphic idea.

5 Neuromorphic processor
architecture

Recently, in our tutorial, Ref. [79], we proposed a vision for
a neuromorphic processor. We discussed how such a
neuromorphic chip could potentially be interfaced with a
general-purpose computer, i.e. a CPU, as a coprocessor to
target specific applications. Broadly speaking, there are
two levels of complexity associated with co-integrating a
general-purpose electronic processor with an application-
specific optical processor. Firstly, a CPU processes a series
of computation instructions in an undecided amount of
time and is not guaranteed to be completed. Neural net-
works, on the other hand, can process data in parallel and
in a deterministic amount of time. CPUs have a concept of a
‘fixed’ instruction set on top of which computer software
can be developed. However, a neuromorphic processor
would require a hardware description language (HDL)
because it describes the intended behavior of a hardware in
real-time. Secondly, seamlessly interfacing a photonic in-
tegrated circuit with an electronic integrated circuit will
take several advances in science and technology including
on-chip lasers and amplifiers, co-integration of CMOS with
silicon photonics, system packaging, high-bandwidth
digital-to-analog converters (DAC) and analog-to-digital
converters (ADCs).

We first discuss the need for a high-level processor
specification that users can interface with, and then detail
the architecture components required to build a neuro-
morphic photonic processor.

5.1 Processor firmware specifications

As highlighted in Section 4, there has been much work on
photonic neural networks with different approaches (all-
optical, optoelectronic etc.) in different platforms (silicon,
I11-V, heterogeneous integration). This is called the phys-
ical implementation (or layer) of the neural network. An
abstraction above this layer is the behavioral layer which
describes how information is encoded, transformed, and
decoded as it flows along a network, and how the network
should learn new behavior from new information.






electronic circuit, which we refer to here as a Command &
Control circuit.

5.2.2 Command & control circuit

As mentioned, the Command & Control circuit, imple-
mented in a standard electronic platform, corrects the
fabrication variations, regulates the PIC against thermal
fluctuations, and protects it against over-voltage damage.
In other words, it ensures that the processor core is well
calibrated and run at peak performance at all times.

Its main function is to translate a weight matrix, digi-
tally loaded to its running memory, into a set of analog
control signals responsible for locking the microring
weight mechanisms in the PIC. It does that by synthesizing
information from external laser parameters such as wave-
length, and local optical power monitors and temperature
sensors embedded on the chip. This control scheme, usu-
ally based on locally heating silicon waveguides, has been
thoroughly demonstrated in silicon photonics [117, 118].
This technique has been perfected to perform principal
component analysis [119] and independent component
analysis [114], which rely in precise multivariate weighting
of high-bandwidth analog signals. It is worth noting that
current research on phase-change materials can enable
photonic non-volatile memory, which will simplify these
weight setting mechanisms significantly [120]. They would
effectively reduce the static power consumption of weight
locking to a negligible amount compared to heater
approaches.

This micro-controller has a very high analog DC 1/0
count to control each and every weight unit in the PIC, and
a high-throughput digital interface with a reconfiguration
circuit. Circuits based on this design should be able to
reprogram about 10,000 wt per millisecond. The reconfi-
guration circuit is the highest-level sub-processor of the
neuromorphic processor, and it is the low-bandwidth
interface to the host computer and the real world.

5.2.3 Reconfiguration circuit — interfacing with the real
world

To illustrate the function of each circuit, take for example
the Model Predictive Control (MPC) task, introduced in
Ref. [79]. In the MPC task, the controller must solve a



First, the co-localized processor and memory scheme,
which brings the memory and processor closer together. A
byproduct of this is that the programs move closer to pro-



precise digital number representations and safeguarding
mechanisms such as error detection and error correction.
Even mixed-signal neuromorphic platforms of interest with
analog cores [133, 134] in large part rely on offline training
with algorithms and methods with high bit-precision rep-
resentations and computationally near-ideal transfer
functions. It should be noted that the assumption behind
using trained weights for inference is that the inference
hardware should retain the integrity of connections,
weights, and their dynamics in the case of spiking neural
networks.

Currently, at the top level neuromorphic processing
software stack, neural network platforms such as Tensor-
flow and Pytorch carry out the translation of application-
level specifications to computational graphs and their
corresponding trained weights. However, these weights are
trained without knowledge of the inference hardware. In
digital electronics, this disparity is usually manifested
when the bit-resolution of the inference hardware is
different from that of the trained weights [135]. In analog
neuromorphic circuits and photonics in particular, by
mapping arithmetic functions to non-ideal transfer func-
tions of the photonic components, the integrity of trained
weights is challenged. In addition, unlike digital circuits,
even small amounts of noise can skew numerical repre-
sentations. Having said that, we envision a high-level
hardware-aware layer in the photonic neuromorphic soft-
ware stack, which can natively simulate and execute an
artificial neural network. One effective approach to realize
such layer is to conduct training and inference by including
behavioral models of photonic components early on in the
neural network selection and training process.

The two more established neuromorphic photonic
networking architectures (coherent and broadcast-and-
weight interconnects, Section 7) have inspired a few
photonic-aware simulation tools. In Ref. [107], a machine
learning and photonic simulation framework based on the
unitary matrix multiplications compatible with coherent
Mach-Zehnder meshes [45] (Neurophox”). In Ref. [131], the
authors introduced a simulator tool to investigate the
prediction accuracy of a convolutional neural network
(CNN) executed on a broadcast-and-weight architecture.
Behavioral models of photonic components were used to
perform the CNN operations including the convolution. In
Ref. [132] a similar photonic neural network design meth-
odology is proposed (Photonflow®). The idea behind this

methodology is to extend existing and familiar neural
network tools, i.e. Tensorflow, with behavioral and per-
formance models of photonic components.

The advantage of the latter approach, as opposed to
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been used to address data movement on a larger scale. As
photonic links are scaled smaller and some of their prac-
tical problems addressed, photonic devices have the po-
tential to address both of these bottlenecks on-chip
simultaneously. Such photonic systems have been pro-
posed in various configurations to accelerate neural
network operations (see [45, 94, 138]). However, their main
advantage comes from addressing MAC operations
directly. Here, we will look at the advantages of a simple
matrix vector multiplication (MVM) unit made of integrated

photonic components, in which inputs and outputs are
encoded as light signals, and analog matrix multiplica-
tions are performed using a passive optical array.
Possible instantiations of photonic MVMs are shown in
Figure 4. Power or phase can be used to encode informa-
tion, while wavelength or phase selectivity can be used to
program the network into a desired configuration. Wave-
length division multiplexing (WDM) can further increasing
the compute density of the approach. Classic examples
include arrays of resonator weight banks [94, 95, 139] or
Mach-Zehnder interferometers [45]. The most important
metrics are energy efficiency (energy/MAC), throughput per
unit area i.e. compute density (MACs/s/mm?), speed (MVM/
s), and latency (s), where both speed and latency are
measured across an entire matrix-vector (MVM) operation.
In CMOS, MVM operations are typically instantiated using



must be optimized by reducing the intrinsic loss of pho-



100 pm), but perform better for larger arrays (above
100 pm) [143].

In that sense, photonic MVM arrays have a similar
profile to photonic communication channels, with better
performance over larger distances. However, photonic
systems tend to have worse signal-to-noise ratios, as a
result of several factors: (1) photonic channels are ulti-
mately shot noise limited, which is more than an order of
magnitude greater than the thermal noise limits on re-
sistors [143], and (2) to achieve similar compute densities to
electronics, photonic MVMs must run faster to compensate
for their larger device sizes, and noise is speed dependent.
That being said, there are some architectural options to
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