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receptive field and inhibited by LGN inputs near the
periphery of its receptive field. An OFF-center recep-
tive field is the reverse. Thus, these neurons are sensitive
to either light or dark spots at the center of their recep-
tive fields, but in both cases their outputs are character-
ized by the firing rate of pulses of the same type. The
neurons in subsequent layers in V1 are more specific in
their behavior to the local visual input patterns.

Recent research [2] has indicated that neural net-
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That is, let an n-dimensional input image v be represented
by

v =Wh =
r∑

a=1

Wiaha (1)

The r columns of W are the basis images and each of
these is an n-dimensional vector. Thus, W is an n × r
matrix. The hidden components that provide the spe-
cific contribution of each basis vector in the input vectors
are h1, . . . , hr. These latent variables are stochastic and
differ for each observed input v. They are represented
as an r-dimensional vector h. The crucial assumption
in the sparse coding framework is that the hidden vari-
ables exhibit sparseness [11]. The goal is to select a set
of basis components so that v can (by proper choice
of h1, . . . , hr) be represented accurately1 and sparsely.2

However, note that even though some of the elements in
a basis component are zero, they are actually all needed
because the particular set of active coefficients changes
from input to input.

Hoyer suggested that, when this sparse model is learnt
from image data, the learnt basis components have the
properties of the spatial receptive fields of simple cells in
V1. Thus the neural interpretation of the model is that
simple cells in V1 perform sparse coding on the visual
input they receive, with the receptive fields being closely
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Fig. 1 Sparse and part-based basis components of dimensional-
ity 20, 50, and 100 obtained by the NNSC technique. It can be
observed that the basis components tend to become more local-
ized as the dimensionality is increased from 20 to 100. Also, histo-

gram plots of the basis images reveal that as their dimensionality
is increased, the basis components become more binary in nature
(either 0 (black) or 255 (white))

where []kj indicates that the noted divisions and
multiplications are computed element by element. This
projected gradient decent step is guaranteed to decrease
the objective function if the step size µ ≥ 0 is small
enough [5]. However, there is no guarantee of reaching
the global minimum, due to the non-convex constraints:

�NNSC

(
W(t+1), H(t+1)

)
� �NNSC

(
W(t), H(t)

)
; t � 0

(8)

A set of NNSC basis components (computed for the neu-
tral pose in the AR database—see Sect. 5.2) of dimen-
sionality 20, 50, and 100 is shown in Fig. 1.4 It can be
seen that the basis components are both sparse and part-
based. In the next section we discuss NNSC in the con-
text of face recognition.

4 The original facial images were 768×576 pixels. However, after
background removal and geometrical normalization (including
scaling down the image size by 4:1 while maintaining the original
aspect ratio), as explained in detail in Sect. 5, the basis components
are 181 × 121 pixels in size.

4 Face recognition in the part-based subspace

4.1 Basic algorithm

The task of automatically recognizing human faces using
NNSC is depicted in Fig. 2. There is a training stage in
which the facial codes, hk1, . . . , hkm for the individual
database images (a total of m) are extracted and stored
for later use. This can be thought of as creating a model,
which is obviously necessary even for human beings; we
perform correlation between what is seen and what is
already known in order to actually achieve recognition
[12]. At run-time, a test input (a total of l images) is pre-
sented to the system, and its facial codes h
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the vectors are totally uncorrelated (opposite). The
correlation is given by

d
(
hq, hk

) = corr
(
hq, hk

)

= r
∑r

j=1 hqihki −∑r
i=1 hqi

∑r
i=1 hki√[

r
∑r

i=1 h2
qi −

(∑r
i=1 hqi

)2
][

r
∑r

i=1 h2
ki −

(∑r
i=1 hki

)2
]

(16)

5 Experiments and results

This section begins with a brief overview of the facial
databases used for testing and highlights the differences
among them. Then we present and discuss the experi-
ments and results. In all cases, images were first normal-
ized geometrically5 as in [12
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Table 1 A summary of recognition rates with varying expressions
(smile, anger, scream). FaceIt, Bayesian, PCA, and the part-based
techniques are compared

Technique Recognition accuracy

Smile Anger Scream
(AR 02), % (AR 03), % (AR 04), %
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Table 5 A summary of recognition rates with occlusion
(sunglasses) and varying light direction

Technique Recognition accuracy

Sunglasses Sunglasses/ Sunglasses/
(AR 08), % left light right light

(AR 09), % (AR10), %

FaceIt 8 10 6
Bayesian 35 34 28
PCA 16 26 24
NMF 42 36 54
LNMF 50 48 30
NNSC 55 51 50

FaceIt, Bayesian, PCA, and the part-based techniques are com-
pared

as part-based methods. Part-based methods also yield
higher recognition rates than FaceIt and Bayesian tech-
niques, while NNSC outperforms both NMF and LNMF.
Clearly, as one would expect, part-based features are
superior to holistic ones.

Finally, it is noted that for occlusions of this type, the
L1-metric is best suited for NNSC and LNMF, whereas
for NMF the L2-metric is the most suitable. These find-
ings are summarized in Table 6.

5.2.6 Occlusion with scarf
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Non-negative Sparse Coding (NNSC) on various
databases such as the AR, the FERET, the Yale B, and
the Cambridge ORL database. We have compared and
evaluated each of the part-based techniques under vary-
ing illumination, expression, occlusion, and pose factors.
In addition, the part-based representation techniques
were tested with different distance metrics such as the
L1-metric, L2-metric, and Normalized Cross-Correla-
tion (NCC). All the experiments were performed over
a large range of basis dimensions. The experiments can
be grouped into five main categories: recognition across
varying expression, varying illumination, occlusion with
sunglasses, occlusion with scarf, and varying pose.

The AR database was used for the first four experi-
ments (varying expression, illumination, and occlusions),
and the results obtained were compared to the well-
known principal component analysis (PCA) holistic
approach. The results were also compared with two lead-
ing techniques used by the computer vision community:
FaceIt and Bayesian. The Yale B database was utilized
for the experiments with varying pose. The Cambridge
ORL database was used to validate and compare our
results obtained with NNSC with those in the literature
addressing the NMF and LNMF techniques. The same
sets of experiments were performed but the objective
here is to make a direct comparison.

For the experiments with varying expression (anger,
smile, scream), it was found that part-based techniques
performed much better (with NNSC being the best), giv-
ing rates of up to 100%. The FaceIt, Bayesian, and the
PCA approaches did not perform as well, with rates in
the 80% range. We note that the best distance measure
for NMF is NCC, whereas for LNMF and NNSC, it is
the L1-metric.

The recognition accuracies obtained by varying illu-
mination show that Bayesian and PCA cannot deal with
illumination changes as well as the part-based tech-
niques or FaceIt. Again, the part-based techniques pro-
duced rates of up to 100%, with NNSC being the best.
FaceIt yielded rates in the 90% range, while Bayesian
and PCA were in the 70% range. The best distance mea-
sure for NMF was the L2-metric, whereas for LNMF and
NNSC it was NCC.

Part-based techniques gave much higher recognition
rates than PCA when considering partial occlusion and
are consistent with the theory of part-based and holis-
tic methods. The L2-metric was best suited for NMF
whereas for LNMF and NNSC, it was the L1-metric.

The FERET database was also used to test the part-
based techniques. The experiments were performed on
frontal poses and the recognition rates were obtained
for a varying number of basis dimensions, using different
distance metrics as the similarity measure. The L1-metric

was observed to be the best distance metric for the
part-based techniques. The recognition rates were 97%
for the NNSC technique, whereas the NMF and the
LNMF techniques gave accuracies of 95 and 96%, respec-
tively. This relatively high recognition rate was obtained
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